2:2.2 Potential Evapotranspiration
Potential evapotranspiration (PET) was a concept originally introduced by Thornthwaite (1948) as part of a climate classification scheme. He defined PET is the rate at which evapotranspiration would occur from a large area uniformly covered with growing vegetation that has access to an unlimited supply of soil water and that was not exposed to advection or heat storage effects. Because the evapotranspiration rate is strongly influenced by a number of vegetative surface characteristics, Penman (1956) redefined PET as “the amount of water transpired ... by a short green crop, completely shading the ground, of uniform height and never short of water”. Penman used grass as his reference crop, but later researchers (Jensen, et al., 1990) have suggested that alfalfa at a height of 30 to 50 cm may be a more appropriate choice.
Numerous methods have been developed to estimate PET. Three of these methods have been incorporated into SWAT+: the Penman-Monteith method (Monteith, 1965; Allen, 1986; Allen et al., 1989), the Priestley-Taylor method (Priestley and Taylor, 1972) and the Hargreaves method (Hargreaves et al., 1985). The model will also read in daily PET values if the user prefers to apply a different potential evapotranspiration method.
The three PET methods included in SWAT+ vary in the amount of required inputs. The Penman-Monteith method requires solar radiation, air temperature, relative humidity and wind speed. The Priestley-Taylor method requires solar radiation, air temperature and relative humidity. The Hargreaves method requires air temperature only.
Last updated