arrow-left

All pages
gitbookPowered by GitBook
1 of 2

Loading...

Loading...

Dissolved Oxygen

Rainfall is assumed to be saturated with oxygen. To determine the dissolved oxygen concentration of surface runoff, the oxygen uptake by the oxygen demanding substance in runoff is subtracted from the saturation oxygen concentration.

Oxsurf=Oxsatβˆ’ΞΊ1βˆ—cbodsurqβˆ—tov24Ox_{surf}=Ox_{sat}-\kappa_1*cbod_{surq}*\frac{t_{ov}}{24}Oxsurf​=Oxsatβ€‹βˆ’ΞΊ1β€‹βˆ—cbodsurqβ€‹βˆ—24tov​​ 4:5.3.1

where OxsurfOx_{surf}Oxsurf​ is the dissolved oxygen concentration in surface runoff (mg O2O_2O2​/L), OxsatOx_{sat}Oxsat​ is the saturation oxygen concentration (mg O2O_2O2​/L), ΞΊ1\kappa_1ΞΊ1​ is the CBOD deoxygenation rate (dayβˆ’1^{-1}βˆ’1), cbodsurqcbod_{surq}cbodsurq​ is the CBOD concentration in surface runoff (mg CBOD/L), and tovt_{ov}tov​ is the time of concentration for overland flow (hr). For loadings from HRUs, SWAT+ assumes ΞΊ1\kappa_1ΞΊ1​ = 1.047 dayβˆ’1^{-1}βˆ’1.

Oxygen Saturation Concentration

The amount of oxygen that can be dissolved in water is a function of temperature, concentration of dissolved solids, and atmospheric pressure. An equation developed by APHA (1985) is used to calculate the saturation concentration of dissolved oxygen:

Oxsat=exp[βˆ’139.34410+1.575701βˆ—105Twat,Kβˆ’6.642308βˆ—107(Twat,K)2+1.243800βˆ—1010(Twat,K)3βˆ’8.621949βˆ—1011(Twat,K)4]Ox_{sat}=exp[-139.34410+\frac{1.575701*10^5}{T_{wat,K}}-\frac{6.642308*10^7}{(T_{wat,K})^2}+\frac{1.243800*10^{10}}{(T_{wat,K})^3}-\frac{8.621949*10^{11}}{(T_{wat,K})^4}]Oxsat​=exp[βˆ’139.34410+Twat,K​1.575701βˆ—105β€‹βˆ’(Twat,K​)26.642308βˆ—107​+(Twat,K​)31.243800βˆ—1010β€‹βˆ’(Twat,K​)48.621949βˆ—1011​]

4:5.3.2

where OxsatOx_{sat}Oxsat​ is the equilibrium saturation oxygen concentration at 1.00 atm (mg O2O_2O2​/L), and Twat,KT_{wat,K}Twat,K​ is the water temperature in Kelvin (273.15+Β°C).