arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

1:3.4.3.1 Maximum Temperature

The continuity equation relates average daily maximum temperature adjusted for wet or dry conditions to the average daily maximum temperature for the month:

μmxmon∗daystot=μWmxmon∗dayswet+μDmxmon∗daysdry\mu mx_{mon}*days_{tot}=\mu Wmx_{mon}*days_{wet}+\mu Dmx_{mon}*days_{dry}μmxmon​∗daystot​=μWmxmon​∗dayswet​+μDmxmon​∗daysdry​ 1:3.4.14

where μmxmon\mu mx_{mon}μmxmon​ is the average daily maximum temperature for the month (°C\degree C°C), daystotdays_{tot}daystot​ are the total number of days in the month, μWmxmon\mu Wmx_{mon}μWmxmon​ is the average daily maximum temperature of the month on wet days (°C\degree C°C), dayswetdays_{wet}dayswet​ are the number of wet days in the month, μDmxmon\mu Dmx_{mon}μDmxmon​ is the average daily maximum temperature of the month on dry days (°C\degree C°C), and daysdrydays_{dry}daysdry​ are the number of dry days in the month.

The wet day average maximum temperature is assumed to be less than the dry day average maximum temperature by some fraction of (μmxmon−μmnmon\mu mx_{mon}-\mu mn_{mon}μmxmon​−μmnmon​):

1:3.4.15

where is the average daily maximum temperature of the month on wet days (), is the average daily maximum temperature of the month on dry days (), is a scaling factor that controls the degree of deviation in temperature caused by the presence or absence of precipitation, is the average daily maximum temperature for the month(), and is the average daily minimum temperature for the month (). The scaling factor, , is set to 0.5 in SWAT+.

To calculate the dry day average maximum temperature, equations 1:3.4.14 and 1:3.4.15 are combined and solved for :

1:3.4.16

Incorporating the modified values into equation 1:3.4.10, SWAT+ calculates the maximum temperature for a wet day using the equation:

1:3.4.17

and the maximum temperature for a dry day using the equation:

1:3.4.18

μWmxmon=μDmxmon−bT∗(μmxmon−μmnmon)\mu Wmx_{mon}=\mu Dmx_{mon}-b_T*(\mu mx_{mon}-\mu mn_{mon})μWmxmon​=μDmxmon​−bT​∗(μmxmon​−μmnmon​)
μWmxmon\mu Wmx{mon}μWmxmon
°C\degree C°C
μDmxmon\mu Dmx_{mon}μDmxmon​
°C\degree C°C
bTb_TbT​
μmxmon\mu mx_{mon}μmxmon​
°C\degree C°C
μmnmon\mu mn_{mon}μmnmon​
°C\degree C°C
bTb_TbT​
μDmxmon\mu Dmx_{mon}μDmxmon​
μDmxmon=μmxmon+bT∗dayswetdaystot∗(μmxmon−μmnmon)\mu Dmx_{mon}=\mu mx_{mon}+b_T*\frac{days_{wet}}{days_{tot}}*(\mu mx_{mon}-\mu mn_{mon})μDmxmon​=μmxmon​+bT​∗daystot​dayswet​​∗(μmxmon​−μmnmon​)
Tmx=μWmxmon+χi(1)∗σmxmonT_{mx}=\mu Wmx_{mon}+\chi_i(1)*\sigma mx_{mon}Tmx​=μWmxmon​+χi​(1)∗σmxmon​
Tmx=μDmxmon+χi(1)∗σmxmonT_{mx}=\mu Dmx_{mon}+\chi_i(1)*\sigma mx_{mon}Tmx​=μDmxmon​+χi​(1)∗σmxmon​