arrow-left

All pages
gitbookPowered by GitBook
1 of 6

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

1:3.4.3 Adjustment for Clear/Overcast Conditions

Maximum temperature and solar radiation will be lower on overcast days than on clear days. To incorporate the influence of wet/dry days on generated values of maximum temperature and solar radiation, the average daily maximum temperature, μmxmon\mu mx_{mon}μmxmon​, and average daily solar radiation, μradmon\mu rad_{mon}μradmon​, in equations 1:3.4.10 and 1:3.4.12 are adjusted for wet or dry conditions.

1:3.4 Solar Radiation & Temperature

The procedure used to generate daily values for maximum temperature, minimum temperature and solar radiation (Richardson, 1981; Richardson and Wright, 1984) is based on the weakly stationary generating process presented by Matalas (1967).

1:3.4.1 Daily Residuals

Residuals for maximum temperature, minimum temperature and solar radiation are required for calculation of daily values. The residuals must be serially correlated and cross-correlated with the correlations being constant at all locations. The equation used to calculate residuals is:

χi(j)=Aχi−1(j)+Bεi(j)\chi_i(j)=A{\chi_{i-1}}(j)+B{\varepsilon_i}(j)χi​(j)=Aχi−1​(j)+Bεi​(j) 1:3.4.1

where χi(j)\chi_i(j)χi​(j) is a 3 × 1 matrix for day iii whose elements are residuals of maximum temperature (j=1j=1j=1), minimum temperature (j=2j=2j=2) and solar radiation (j=3j=3j=3), χi−1(j)\chi_{i-1}(j)χi−1​(j)) is a 3 × 1 matrix of the previous day’s residuals, εi\varepsilon_iεi​ is a 3 × 1 matrix of independent random components, and AAA and BBB are 3 × 3 matrices whose elements are defined such that the new sequences have the desired serial-correlation and cross-correlation coefficients. The AAA and BBB matrices are given by

1:3.4.2

1:3.4.3

where the superscript denotes the inverse of the matrix and the superscript T denotes the transpose of the matrix. and are defined as

1:3.4.4

1:3.4.5

is the correlation coefficient between variables and on the same day where and may be set to 1 (maximum temperature), 2 (minimum temperature) or 3 (solar radiation) and is the correlation coefficient between variable and with variable lagged one day with respect to variable . Correlation coefficients were determined for 31 locations in the United States using 20 years of temperature and solar radiation data (Richardson, 1982). Using the average values of these coefficients, the and matrices become

1:3.4.6

1:3.4.7

Using equations 1:3.4.2 and 1:3.4.3, the A and B matrices become

1:3.4.8

1:3.4.9

The A and B matrices defined in equations 1:3.4.8 and 1:3.4.9 are used in conjunction with equation 1:3.4.1 to generate daily sequences of residuals of maximum temperature, minimum temperature and solar radiation.

A=M1∗M0−1A=M_1*M_0^{-1}A=M1​∗M0−1​
B∗BT=M0−M1∗M0−1∗M1TB*B^T=M_0-M_1*M_0^{-1}*M_1^TB∗BT=M0​−M1​∗M0−1​∗M1T​
−1-1−1
M0M_0M0​
M1M_1M1​
M0=[1ρ0(1,2)ρ0(1,3)ρ0(1,2)1ρ0(2,3)ρ0(1,3)ρ0(2,3)1]M_0=\left[\begin{array}{ccc} 1 & \rho_0(1,2) & \rho_0(1,3) \\ \rho_0(1,2) & 1 & \rho_0(2,3) \\ \rho_0(1,3) & \rho_0(2,3) & 1 \end {array} \right ]M0​=​1ρ0​(1,2)ρ0​(1,3)​ρ0​(1,2)1ρ0​(2,3)​ρ0​(1,3)ρ0​(2,3)1​​
M1=[ρ1(1,1)ρ1(1,2)ρ0(1,3)ρ1(2,1)ρ1(2,2)ρ1(2,3)ρ1(3,1)ρ1(3,2)ρ1(3,3)]M_1=\left[\begin{array}{ccc} \rho_1(1,1) & \rho_1(1,2) & \rho_0(1,3) \\ \rho_1(2,1) & \rho_1(2,2) & \rho_1(2,3) \\ \rho_1(3,1) & \rho_1(3,2) & \rho_1(3,3) \end {array} \right ]M1​=​ρ1​(1,1)ρ1​(2,1)ρ1​(3,1)​ρ1​(1,2)ρ1​(2,2)ρ1​(3,2)​ρ0​(1,3)ρ1​(2,3)ρ1​(3,3)​​
ρ0(j,k)\rho_0(j,k)ρ0​(j,k)
jjj
kkk
jjj
kkk
ρ1(j,k)\rho_1(j,k)ρ1​(j,k)
jjj
kkk
kkk
jjj
M0M_0M0​
M1M_1M1​
M0=[1.0000.6330.1860.6331.000−0.1930.186−0.1931.000]M_0=\left[\begin{array}{ccc} 1.000 & 0.633 & 0.186 \\ 0.633 & 1.000 & -0.193 \\ 0.186 & -0.193 & 1.000 \end {array} \right ]M0​=​1.0000.6330.186​0.6331.000−0.193​0.186−0.1931.000​​
M1=[0.6210.4450.0870.5630.674−0.1000.015−0.0910.251]M_1=\left[\begin{array}{ccc} 0.621 & 0.445 & 0.087 \\ 0.563 & 0.674 & -0.100 \\ 0.015 & -0.091 & 0.251 \end {array} \right ]M1​=​0.6210.5630.015​0.4450.674−0.091​0.087−0.1000.251​​
A=[0.5670.086−0.0020.2530.504−0.050−0.006−0.0390.244]A=\left[\begin{array}{ccc} 0.567 & 0.086 & -0.002 \\ 0.253 & 0.504 & -0.050 \\ -0.006 & -0.039 & 0.244 \end {array} \right ]A=​0.5670.253−0.006​0.0860.504−0.039​−0.002−0.0500.244​​
B=[0.781000.3280.63700.238−0.3410.873]B=\left[\begin{array}{ccc} 0.781 & 0 & 0 \\ 0.328 & 0.637 & 0 \\ 0.238 & -0.341 & 0.873 \end {array} \right ]B=​0.7810.3280.238​00.637−0.341​000.873​​

1:3.4.3.2 Solar Radiation

The continuity equation relates average daily solar radiation adjusted for wet or dry conditions to the average daily solar radiation for the month:

μradmon∗daystot=μWradmon∗dayswet+μDradmon∗daysdry\mu rad_{mon}*days_{tot}=\mu Wrad_{mon}*days_{wet}+\mu Drad_{mon}*days_{dry}μradmon​∗daystot​=μWradmon​∗dayswet​+μDradmon​∗daysdry​ 1:3.4.19

where μradmon\mu rad_{mon}μradmon​ is the average daily solar radiation for the month (MJ m−2^{-2}−2), daystotdays_{tot}daystot​ are the total number of days in the month, μWradmon\mu Wrad_{mon}μWradmon​ is the average daily solar radiation of the month on wet days (MJ m−2^{-2}−2), dayswetdays_{wet}dayswet​ are the number of wet days in the month, μDradmon\mu Drad_{mon}μDradmon​ is the average daily solar radiation of the month on dry days (MJ m−2^{-2}−2), and daysdrydays_{dry}daysdry​ are the number of dry days in the month.

The wet day average solar radiation is assumed to be less than the dry day average solar radiation by some fraction:

1:3.4.20

where is the average daily solar radiation of the month on wet days (MJ m), is the average daily solar radiation of the month on dry days (MJ m), and is a scaling factor that controls the degree of deviation in solar radiation caused by the presence or absence of precipitation. The scaling factor, , is set to 0.5 in SWAT+.

To calculate the dry day average solar radiation, equations 1:3.4.19 and 1:3.4.20 are combined and solved for :

1:3.4.21

Incorporating the modified values into equation 1:3.4.12, SWAT+ calculated the solar radiation on a wet day using the equation:

1:3.4.22

and the solar radiation on a dry day using the equation:

1:3.4.23

Table 1:3-4: SWAT+ input variables that pertain to generation of temperature and solar radiation.

Definition
Source Name
Input Name
Input File

tmp_max_ave

: standard deviation for maximum air temperature in month ()

tmpstdmx

tmp_max_sd

: average minimum air temperature for month ()

tmpmn

tmp_min_ave

: standard deviation for minimum air temperature in month ()

tmpstdmn

tmp_min_sd

: average daily solar radiation for month (MJ m)

solarav

slr_ave

: average number of days of precipitation in month

pcpd

pcp_days

μWradmon=bR∗μDradmon\mu Wrad_{mon}=b_R*\mu Drad_{mon}μWradmon​=bR​∗μDradmon​
μWradmon\mu Wrad_{mon}μWradmon​
−2^{-2}−2
μDradmon\mu Drad_{mon}μDradmon​
−2^{-2}−2
bRb_RbR​
bRb_RbR​
μDradmon\mu Drad_{mon}μDradmon​
μDradmon=μradmon∗daystotbR∗dayswet+daysdry\mu Drad_{mon}=\frac{\mu rad_{mon}*days_{tot}}{b_R*days_{wet}+days_{dry}}μDradmon​=bR​∗dayswet​+daysdry​μradmon​∗daystot​​
Hday=μWradmon+χi(3)∗σradmonH_{day}=\mu Wrad_{mon}+\chi_i(3)*\sigma rad_{mon}Hday​=μWradmon​+χi​(3)∗σradmon​
Hday=μDradmon+χi(3)∗σradmonH_{day}=\mu Drad_{mon}+\chi_i(3)*\sigma rad_{mon}Hday​=μDradmon​+χi​(3)∗σradmon​

Temperature input: 'sim' for simulated or gage name

tgage

tmp

weather-sta.cli

Solar radiation input: 'sim' for simulated or gage name

sgage

slr

weather-sta.cli

μmxmon\mu mx_{mon}μmxmon​: average maximum air temperature for month (°C\degree C°C)

tmpmx

1:3.4.3.1 Maximum Temperature

The continuity equation relates average daily maximum temperature adjusted for wet or dry conditions to the average daily maximum temperature for the month:

μmxmon∗daystot=μWmxmon∗dayswet+μDmxmon∗daysdry\mu mx_{mon}*days_{tot}=\mu Wmx_{mon}*days_{wet}+\mu Dmx_{mon}*days_{dry}μmxmon​∗daystot​=μWmxmon​∗dayswet​+μDmxmon​∗daysdry​ 1:3.4.14

where μmxmon\mu mx_{mon}μmxmon​ is the average daily maximum temperature for the month (°C\degree C°C), daystotdays_{tot}daystot​ are the total number of days in the month, μWmxmon\mu Wmx_{mon}μWmxmon​ is the average daily maximum temperature of the month on wet days (°C\degree C°C), dayswetdays_{wet}dayswet​ are the number of wet days in the month, μDmxmon\mu Dmx_{mon}μDmxmon​ is the average daily maximum temperature of the month on dry days (°C\degree C°C), and daysdrydays_{dry}daysdry​ are the number of dry days in the month.

The wet day average maximum temperature is assumed to be less than the dry day average maximum temperature by some fraction of (μmxmon−μmnmon\mu mx_{mon}-\mu mn_{mon}μmxmon​−μmnmon​):

1:3.4.15

where is the average daily maximum temperature of the month on wet days (), is the average daily maximum temperature of the month on dry days (), is a scaling factor that controls the degree of deviation in temperature caused by the presence or absence of precipitation, is the average daily maximum temperature for the month(), and is the average daily minimum temperature for the month (). The scaling factor, , is set to 0.5 in SWAT+.

To calculate the dry day average maximum temperature, equations 1:3.4.14 and 1:3.4.15 are combined and solved for :

1:3.4.16

Incorporating the modified values into equation 1:3.4.10, SWAT+ calculates the maximum temperature for a wet day using the equation:

1:3.4.17

and the maximum temperature for a dry day using the equation:

1:3.4.18

μWmxmon=μDmxmon−bT∗(μmxmon−μmnmon)\mu Wmx_{mon}=\mu Dmx_{mon}-b_T*(\mu mx_{mon}-\mu mn_{mon})μWmxmon​=μDmxmon​−bT​∗(μmxmon​−μmnmon​)
μWmxmon\mu Wmx{mon}μWmxmon
°C\degree C°C
μDmxmon\mu Dmx_{mon}μDmxmon​
°C\degree C°C
bTb_TbT​
μmxmon\mu mx_{mon}μmxmon​
°C\degree C°C
μmnmon\mu mn_{mon}μmnmon​
°C\degree C°C
bTb_TbT​
μDmxmon\mu Dmx_{mon}μDmxmon​
μDmxmon=μmxmon+bT∗dayswetdaystot∗(μmxmon−μmnmon)\mu Dmx_{mon}=\mu mx_{mon}+b_T*\frac{days_{wet}}{days_{tot}}*(\mu mx_{mon}-\mu mn_{mon})μDmxmon​=μmxmon​+bT​∗daystot​dayswet​​∗(μmxmon​−μmnmon​)
Tmx=μWmxmon+χi(1)∗σmxmonT_{mx}=\mu Wmx_{mon}+\chi_i(1)*\sigma mx_{mon}Tmx​=μWmxmon​+χi​(1)∗σmxmon​
Tmx=μDmxmon+χi(1)∗σmxmonT_{mx}=\mu Dmx_{mon}+\chi_i(1)*\sigma mx_{mon}Tmx​=μDmxmon​+χi​(1)∗σmxmon​
σmxmon\sigma mx_{mon}σmxmon​
°C\degree C°C
μmnmon\mu mn_{mon}μmnmon​
°C\degree C°C
σmnmon\sigma mn_{mon}σmnmon​
°C\degree C°C
μradmon\mu rad_{mon}μradmon​
−2^{-2}−2
dayswetdays_{wet}dayswet​
weather-wgn.cli
weather-wgn.cli
weather-wgn.cli
weather-wgn.cli
weather-wgn.cli
weather-wgn.cli

1:3.4.2 Generated Values

The daily generated values are determined by multiplying the residual elements generated with equation 1:3.4.1 by the monthly standard deviation and adding the monthly average value.

Tmx=μmxmon+χi(1)∗σmxmonT_{mx}=\mu mx_{mon} + \chi_i(1)*\sigma mx_{mon}Tmx​=μmxmon​+χi​(1)∗σmxmon​ 1:3.4.10

Tmn=μmnmon+χi(2)∗σmnmonT_{mn}=\mu mn_{mon} + \chi_i(2)*\sigma mn_{mon}Tmn​=μmnmon​+χi​(2)∗σmnmon​ 1:3.4.11

Hday=μradmon+χi(3)∗σradmonH_{day}=\mu rad_{mon} + \chi_i(3)*\sigma rad_{mon}Hday​=μradmon​+χi​(3)∗σradmon​ 1:3.4.12

where TmxT_{mx}Tmx​ is the maximum temperature for the day (°C\degree C°C), μmxmon\mu mx_{mon}μmxmon​ is the average daily maximum temperature for the month (°C\degree C°C), χi(1)\chi_i(1)χi​(1) is the residual for maximum temperature on the given day, is the standard deviation for daily maximum temperature during the month (), is the minimum temperature for the day (), is the average daily minimum temperature for the month (), is the residual for minimum temperature on the given day, is the standard deviation for daily minimum temperature during the month (), is the solar radiation for the day (MJ m), is the average daily solar radiation for the month (MJ m), is the residual for solar radiation on the given day, and is the standard deviation for daily solar radiation during the month (MJ m).

The user is required to input standard deviation for maximum and minimum temperature. For solar radiation the standard deviation is estimated as ¼ of the difference between the extreme and mean value for each month.

1:3.4.13

where is the standard deviation for daily solar radiation during the month (MJ m), is the maximum solar radiation that can reach the earth’s surface on a given day (MJ m), and is the average daily solar radiation for the month (MJ m).

σmxmon\sigma mx_{mon}σmxmon​
°C\degree C°C
TmnT_{mn}Tmn​
°C\degree C°C
μmnmon\mu mn_{mon}μmnmon​
°C\degree C°C
χi(2)\chi_i(2)χi​(2)
σmnmon\sigma mn_{mon}σmnmon​
°C\degree C°C
HdayH_{day}Hday​
−2^{-2}−2
μradmon\mu rad_{mon}μradmon​
−2^{-2}−2
χi(3)\chi_i(3)χi​(3)
σradmon\sigma rad_{mon}σradmon​
−2^{-2}−2
σradmon=Hmx−μradmon4\sigma rad_{mon}=\frac{H_{mx}-\mu rad_{mon}}{4}σradmon​=4Hmx​−μradmon​​
σradmon\sigma rad_{mon}σradmon​
−2^{-2}−2
HmxH_{mx}Hmx​
−2^{-2}−2
μradmon\mu rad_{mon}μradmon​
−2^{-2}−2