arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Solid-Liquid Partitioning

Pesticides will partition into particulate and dissolved forms. The fraction of pesticide in each phase is a function of the pesticide’s partition coefficient and the reach segment’s suspended solid concentration:

Fd=11+Kd∗concsedF_d=\frac{1}{1+K_d*conc_{sed}}Fd​=1+Kd​∗concsed​1​ 7:4.1.1

Fp=Kd∗concsed1+Kd∗concsed=1−FdF_p=\frac{K_d*conc_{sed}}{1+ K_d*conc_{sed}}=1-F_dFp​=1+Kd​∗concsed​Kd​∗concsed​​=1−Fd​ 7:4.1.2

where FdF_dFd​ is the fraction of total pesticide in the dissolved phase, FpF_pFp​ is the fraction of total pesticide in the particulate phase, KdK_dKd​ is the pesticide partition coefficient (m3^33/g), and concsedconc_{sed}concsed​ is the concentration of suspended solids in the water (g/m3^33).

The pesticide partition coefficient can be estimated from the octanol-water partition coefficient (Chapra, 1997):

7:4.1.3

where is the pesticide partition coefficient (m/g) and is the pesticide’s octanol-water partition coefficient (mg m(mg m)). Values for the octanol-water partition coefficient have been published for many chemicals. If a published value cannot be found, it can be estimated from solubility (Chapra, 1997):

7:4.1.4

where is the pesticide solubility (moles/L). The solubility in these units is calculated:

7:4.1.5

where is the pesticide solubility (moles/L), is the pesticide solubility (mg/L) and is the molecular weight (g/mole).

Kd=3.085∗10−8∗KowK_d=3.085*10^{-8}*K_{ow}Kd​=3.085∗10−8∗Kow​
KdK_dKd​
3^33
KowK_{ow}Kow​
octanol−3^{-3}_{octanol}octanol−3​
water−3^{-3}_{water}water−3​
−1^{-1}−1
log(Kow)=5.00−0.670∗log(pstsol′)log(K_{ow})=5.00-0.670*log(pst'_{sol})log(Kow​)=5.00−0.670∗log(pstsol′​)
pstsol′pst'_{sol}pstsol′​
μ\muμ
pstsol′=pstsolMW∗103pst'_{sol}=\frac{pst_{sol}}{MW}*10^3pstsol′​=MWpstsol​​∗103
pstsol′pst'_{sol}pstsol′​
μ\muμ
pstsolpst_{sol}pstsol​
MWMWMW