arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Solid-Liquid Partitioning

Pesticides will partition into particulate and dissolved forms. The fraction of pesticide in each phase is a function of the pesticide’s partition coefficient and the water body’s suspended solid concentration:

Fd=11+Kd∗concsedF_ d=\frac{1}{1+K_d*conc_{sed}} Fd​=1+Kd​∗concsed​1​ 8:4.1.1

Fp=Kd∗concsed1+Kd∗concsed=1−FdF_p=\frac{K_d*conc_{sed}}{1+K_d*conc_{sed}}=1-F_d Fp​=1+Kd​∗concsed​Kd​∗concsed​​=1−Fd​ 8:4.1.2

where FdF_d Fd​ is the fraction of total pesticide in the dissolved phase, FpF_p Fp​ is the fraction of total pesticide in the particulate phase, KdK_d Kd​ is the pesticide partition coefficient (m3^3 3/g), and concsedconc_{sed} concsed​ is the concentration of suspended solids in the water (g/m3^3 3).

The pesticide partition coefficient can be estimated from the octanol-water partition coefficient (Chapra, 1997):

8:4.1.3

where is the pesticide partition coefficient (m/g) and is the pesticide’s octanol-water partition coefficient (mg (mg ). Values for the octanol-water partition coefficient have been published for many chemicals. If a published value cannot be found, it can be estimated from solubility (Chapra, 1997):

8:4.1.4

where is the pesticide solubility (moles/L). The solubility in these units is calculated:

8:4.1.5

where is the pesticide solubility (moles/L), is the pesticide solubility (mg/L) and is the molecular weight (g/mole).

Kd=3.085∗10−8∗KowK_d=3.085*10^{-8}*K_{ow} Kd​=3.085∗10−8∗Kow​
KdK_d Kd​
3^3 3
KowK_{ow} Kow​
moctanol−3m^{-3}_{octanol} moctanol−3​
mwater−3)−1m^{-3}_{water})^{-1} mwater−3​)−1
log(Kow)=5.00−0.670∗log(pstsol′)log(K_{ow})=5.00-0.670*log(pst'_{sol}) log(Kow​)=5.00−0.670∗log(pstsol′​)
pstsol′pst'_{sol} pstsol′​
μ\mu μ
pstsol′=pstsolMW∗103pst'_{sol}=\frac{pst_{sol}}{MW}*10^3 pstsol′​=MWpstsol​​∗103
pstsol′pst'_{sol} pstsol′​
μ\mu μ
pstsolpst_{sol} pstsol​
MWMW MW