arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Solar Radiation

The continuity equation relates average daily solar radiation adjusted for wet or dry conditions to the average daily solar radiation for the month:

μradmon∗daystot=μWradmon∗dayswet+μDradmon∗daysdry\mu rad_{mon}*days_{tot}=\mu Wrad_{mon}*days_{wet}+\mu Drad_{mon}*days_{dry}μradmon​∗daystot​=μWradmon​∗dayswet​+μDradmon​∗daysdry​ 1:3.4.19

where μradmon\mu rad_{mon}μradmon​ is the average daily solar radiation for the month (MJ m−2^{-2}−2), daystotdays_{tot}daystot​ are the total number of days in the month, μWradmon\mu Wrad_{mon}μWradmon​ is the average daily solar radiation of the month on wet days (MJ m−2^{-2}−2), dayswetdays_{wet}dayswet​ are the number of wet days in the month, μDradmon\mu Drad_{mon}μDradmon​is the average daily solar radiation of the month on dry days (MJ m−2^{-2}−2), and daysdrydays_{dry}daysdry​ are the number of dry days in the month.

The wet day average solar radiation is assumed to be less than the dry day average solar radiation by some fraction:

1:3.4.20

where is the average daily solar radiation of the month on wet days (MJ m), is the average daily solar radiation of the month on dry days (MJ m), and is a scaling factor that controls the degree of deviation in solar radiation caused by the presence or absence of precipitation. The scaling factor, , is set to 0.5 in SWAT+.

To calculate the dry day average solar radiation, equations 1:3.4.19 and 1:3.4.20 are combined and solved for :

1:3.4.21

Incorporating the modified values into equation 1:3.4.12, SWAT+ calculated the solar radiation on a wet day using the equation:

1:3.4.22

and the solar radiation on a dry day using the equation:

1:3.4.23

Table 1:3-4: SWAT+ input variables that pertain to generation of temperature and solar radiation.

Variable Name
Definition
File Name

: standard deviation for maximum air temperature in month (°C)

.wgn

TMPMN(mon)

: average minimum air temperature for month (°C)

.wgn

TMPSTDMN(mon)

: standard deviation for minimum air temperature in month (°C)

.wgn

SOLARAV(mon)

: average daily solar radiation for month (MJ m)

.wgn

PCPD(mon)

: average number of days of precipitation in month

.wgn

μWradmon=bR∗μDradmon\mu Wrad_{mon}=b_R*\mu Drad_{mon}μWradmon​=bR​∗μDradmon​
μWradmon\mu Wrad_{mon}μWradmon​
−2^{-2}−2
μDradmon\mu Drad_{mon}μDradmon​
−2^{-2}−2
bRb_RbR​
bRb_RbR​
μDradmon\mu Drad_{mon}μDradmon​
μDradmon=μradmon∗daystotbR∗dayswet+daysdry\mu Drad_{mon}=\frac{\mu rad_{mon}*days_{tot}}{b_R*days_{wet}+days_{dry}}μDradmon​=bR​∗dayswet​+daysdry​μradmon​∗daystot​​
Hday=μWradmon+χi(3)∗σradmonH_{day}=\mu Wrad_{mon}+\chi_i(3)*\sigma rad_{mon}Hday​=μWradmon​+χi​(3)∗σradmon​
Hday=μDradmon+χi(3)∗σradmonH_{day}=\mu Drad_{mon}+\chi_i(3)*\sigma rad_{mon}Hday​=μDradmon​+χi​(3)∗σradmon​

TMPSIM

Temperature input code: 1-measured, 2-generated

file.cio

SLRSIM

Solar radiation input code: 1-measured, 2-generated

file.cio

TMPMX(mon)

μmxmon\mu mx_{mon}μmxmon​: average maximum air temperature for month (°C)

.wgn

TMPSTDMX(mon)

σmxmon\sigma mx_{mon}σmxmon​
μmnmon\mu mn_{mon}μmnmon​
σmnmon\sigma mn_{mon}σmnmon​
μradmon\mu rad_{mon}μradmon​
−2^{-2}−2
dayswetdays_{wet}dayswet​