arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Daily Net Radiation

Net radiation requires the determination of both incoming and reflected short-wave radiation and net long-wave or thermal radiation. Expressing net radiation in terms of the net short-wave and long-wave components gives:

Hnet=Hdayβ†“βˆ’Ξ±βˆ—Hday↑+HLβ†“βˆ’HL↑H_{net}=H_{day}\downarrow-\alpha*H_{day}\uparrow+H_L\downarrow-H_L\uparrowHnet​=Hdayβ€‹β†“βˆ’Ξ±βˆ—Hday​↑+HLβ€‹β†“βˆ’HL​↑ 1:1.2.11

or

Hnet=(1βˆ’Ξ±)βˆ—Hday+HbH_{net} = (1-\alpha)*H_{day} + H_bHnet​=(1βˆ’Ξ±)βˆ—Hday​+Hb​ 1:1.2.12

where HnetH_{net}Hnet​ is the net radiation (MJmβˆ’2dβˆ’1MJ m^{-2} d^{-1}MJmβˆ’2dβˆ’1), HdayH_{day}Hday​ is the short-wave solar radiation reaching the ground (MJmβˆ’2dβˆ’1MJ m^{-2} d^{-1}MJmβˆ’2dβˆ’1), is the short-wave reflectance or albedo, HLH_LHL​ is the long-wave radiation (MJmβˆ’2dβˆ’1MJ m^{-2} d^{-1}MJmβˆ’2dβˆ’1), HbH_bHb​is the net incoming long-wave radiation (MJmβˆ’2dβˆ’1MJ m^{-2} d^{-1}MJmβˆ’2dβˆ’1) and the arrows indicate the direction of the radiation flux.

hashtag
Net Short-Wave Radiation

Net short-wave radiation is defined as . SWAT+ calculates a daily value for albedo as a function of the soil type, plant cover, and snow cover. When the snow water equivalent is greater than 0.5 mm,

1:1.2.13

When the snow water equivalent is less than 0.5 mm and no plants are growing in the HRU,

1:1.2.14

where is the soil albedo. When plants are growing and the snow water equivalent is less than 0.5 mm,

1:1.2.15

where is the plant albedo (set at 0.23), and is the soil cover index. The soil cover index is calculated

1:1.2.16

where is the aboveground biomass and residue ().

hashtag
Net Long-Wave Radiation

Long-wave radiation is emitted from an object according to the radiation law:

1:1.2.17

where is the radiant energy (, is the emissivity, is the Stefan-Boltzmann constant (, and is the mean air temperature in Kelvin (273.15 + C). Net long-wave radiation is calculated using a modified form of equation 1:1.2.17 (Jensen et al., 1990):

1:1.2.18

where is the net long-wave radiation (), is a factor to adjust for cloud cover, a is the atmospheric emittance, and vs is the vegetative or soil emittance.

Wright and Jensen (1972) developed the following expression for the cloud cover adjustment factor, :

1:1.2.19

where a and b are constants, is the solar radiation reaching the ground surface on a given day (), and is the maximum possible solar radiation to reach the ground surface on a given day (). The two emittances in equation 1:1.2.18 may be combined into a single term, the net emittance . The net emittance is calculated using an equation developed by Brunt (1932):

1:1.2.20

where and are constants and is the vapor pressure on a given day (kPa). The calculation of e is given in Chapter 1:2. Combining equations 1:1.2.18, 1:1.2.19, and 1:1.2.20 results in a general equation for net long-wave radiation:

1:1.2.21

Experimental values for the coefficients and are presented in Table 1:1.3. The default equation in SWAT+ uses coefficient values proposed by Doorenbos and Pruitt (1977):

1:1.2.22

Table 1:1-3: Experimental coefficients for net long-wave radiation equations (from Jensen et al., 1990).

Region
(a,
b)
(a1,
b1)

Table 1:1-4: SWAT+ input variables used in net radiation calculations.

Variable Name
Definition
File Name

-0.139)

England

not available

not available

(0.47,

-0.206)

England

not available

not available

(0.44,

-0.253)

Australia

not available

not available

(0.35,

-0.133)

General

(1.2

-0.2)

(0.39,

-0.158)

General-humid areas

(1.0

0.0)

General-semihumid areas

(1.1

-0.1)

: Daily solar radiation reaching the earth’s surface (MJ m-2 d-1)

.slr

(1βˆ’Ξ±)βˆ—Hday(1-\alpha)*H_{day}(1βˆ’Ξ±)βˆ—Hday​
Ξ±=0.8\alpha=0.8Ξ±=0.8
Ξ±=Ξ±soil\alpha=\alpha_{soil}Ξ±=Ξ±soil​
soil_{soil}soil​
Ξ±=Ξ±plantβˆ—(1βˆ’covsol)+Ξ±soilβˆ—covsol\alpha=\alpha_{plant}*(1-cov_{sol})+\alpha_{soil}*cov_{sol}Ξ±=Ξ±plantβ€‹βˆ—(1βˆ’covsol​)+Ξ±soilβ€‹βˆ—covsol​
plant_{plant}plant​
covsolcov_{sol}covsol​
covsol=exp(βˆ’5.0X10βˆ’5βˆ—CV)cov_{sol}=exp(-5.0X10^{-5}*CV)covsol​=exp(βˆ’5.0X10βˆ’5βˆ—CV)
CVCVCV
kghaβˆ’1kg ha^{-1}kghaβˆ’1
HR=Ξ΅βˆ—Οƒβˆ—TK4H_R=\varepsilon*\sigma*T_K^{4}HR​=Ξ΅βˆ—Οƒβˆ—TK4​
HRH_RHR​
MJmβˆ’2dβˆ’1)MJ m^{-2} d^{-1})MJmβˆ’2dβˆ’1)
4.90310βˆ’9MJmβˆ’2Kβˆ’4dβˆ’1)4.903 10^{-9} MJ m^{-2} K^{-4} d^{-1})4.90310βˆ’9MJmβˆ’2Kβˆ’4dβˆ’1)
TKT_KTK​
Hb=fcldβˆ—(Ξ΅aβˆ’Ξ΅vs)βˆ—Οƒβˆ—TK4H_b=f_{cld}*(\varepsilon_a -\varepsilon_{vs})*\sigma*T_K^{4}Hb​=fcldβ€‹βˆ—(Ξ΅aβ€‹βˆ’Ξ΅vs​)βˆ—Οƒβˆ—TK4​
HbH_bHb​
MJmβˆ’2dβˆ’1MJ m^{-2} d^{-1}MJmβˆ’2dβˆ’1
fcldf_{cld}fcld​
fcldf_{cld}fcld​
fcld=aβˆ—HdayHMXβˆ’bf_{cld}=a*\frac{H_{day}}{H_{MX}}-bfcld​=aβˆ—HMX​Hdayβ€‹β€‹βˆ’b
HdayH_{day}Hday​
MJmβˆ’2dβˆ’1MJ m^{-2}d^{-1}MJmβˆ’2dβˆ’1
HMXH_{MX}HMX​
MJmβˆ’2dβˆ’1MJ m^{-2}d^{-1}MJmβˆ’2dβˆ’1
Ξ΅β€²=Ξ΅aβˆ’Ξ΅vs=βˆ’(a1+b1βˆ—(e))\varepsilon'=\varepsilon_a-\varepsilon_{vs}=-(a_1+b_1*\sqrt(e))Ξ΅β€²=Ξ΅aβ€‹βˆ’Ξ΅vs​=βˆ’(a1​+b1β€‹βˆ—(​e))
a1a_1a1​
b1b_1b1​
eee
Hb=βˆ’[aβˆ—HdayHMXβˆ’b]βˆ—[a1+b1βˆ—(e)]βˆ—Οƒβˆ—Tk4H_b=-[a*\frac{H_{day}}{H_{MX}}-b]*[a_1+b_1*\sqrt(e)]*\sigma*T_k^4Hb​=βˆ’[aβˆ—HMX​Hdayβ€‹β€‹βˆ’b]βˆ—[a1​+b1β€‹βˆ—(​e)]βˆ—Οƒβˆ—Tk4​
a,b,a1a,b,a_1 a,b,a1​
b1b_1b1​
Hb=βˆ’[0.9βˆ—HdayHMX+0.1]βˆ—[0.34βˆ’0.139(e)]βˆ—Οƒβˆ—Tk4H_b=-[0.9*\frac{H_{day}}{H_{MX}}+0.1]*[0.34-0.139\sqrt(e)]*\sigma*T_k^4Hb​=βˆ’[0.9βˆ—HMX​Hday​​+0.1]βˆ—[0.34βˆ’0.139(​e)]βˆ—Οƒβˆ—Tk4​

Davis, California

(1.35,

-0.35)

(0.35,

-0.145)

Southern Idaho

(1.22,

-0.18)

SOL_ALB

soil_{soil}soil​: moist soil albedo

.sol

MAX TEMP

TmxT_{mx}Tmx​: Daily maximum temperature (C)

.tmp

MIN TEMP

TmnT_{mn}Tmn​: Daily minimum temperature (C)

.tmp

(0.325,

SOL_RAD

HdayH_{day}Hday​