arrow-left

All pages
gitbookPowered by GitBook
1 of 1

Loading...

Algae

Suspended algal biomass is assumed to be directly proportional to chlorophyll aaa. Therefore, the algal biomass loading to the stream can be estimated as the chlorophyll aaa loading from the land area. Cluis et al. (1988) developed a relationship between the nutrient enrichment index (total N: total P), chlorophyll aaa, and algal growth potential in the North Yamaska River, Canada.

(AGP+chla)βˆ—vsurf=fβˆ—(TNTP)g(AGP+chla)*v_{surf}=f*(\frac{TN}{TP})^g(AGP+chla)βˆ—vsurf​=fβˆ—(TPTN​)g 4:5.1.1

where AGPAGPAGP is the algal growth potential (mg/L), chlachlachla is the chlorophyll aaa concentration in the surface runoff (ΞΌg\mu gΞΌg/L), vsurfv_{surf}vsurf​ is the surface runoff flow rate (m3^33/s), TNTNTN is the total Kjeldahl nitrogen load (kmoles), TPTPTP is the total phosphorus load (kmoles), fff is a coefficient and ggg is an exponent.

The chlorophyll concentration in surface runoff is calculated in SWAT+ using a simplified version of Cluis et al.’s exponential function (1988):

if or and 4:5.1.2

if or ( and ) 4:5.1.3

if , and 4:5.1.4

aaa
chla=0chla=0chla=0
(vsurf<10βˆ’5m3/s)(v_{surf}<10^{-5}m^3/s)(vsurf​<10βˆ’5m3/s)
(TP(TP (TP
TN<10βˆ’6)TN <10^{-6})TN<10βˆ’6)
chla=0.5βˆ—102.7vsurfchla =\frac{0.5*10^{2.7}}{v_{surf}}chla=vsurf​0.5βˆ—102.7​
vsurf>10βˆ’5m3/sv_{surf}>10^{-5}m^3/svsurf​>10βˆ’5m3/s
TPTPTP
TN>10βˆ’6TN>10^{-6}TN>10βˆ’6
chla=0.5βˆ—100.5vsurfchla=\frac{0.5*10^{0.5}}{v_{surf}}chla=vsurf​0.5βˆ—100.5​
vsurf>10βˆ’5m3/sv_{surf}>10^{-5}m^3/svsurf​>10βˆ’5m3/s
TP<10βˆ’6TP<10^{-6}TP<10βˆ’6
TN>10βˆ’6TN>10^{-6}TN>10βˆ’6